Powers in Finitely Generated Groups
نویسندگان
چکیده
In this paper we study the set Γn of nth-powers in certain finitely generated groups Γ. We show that, if Γ is soluble or linear, and Γn contains a finite index subgroup, then Γ is nilpotent-by-finite. We also show that, if Γ is linear and Γn has finite index (i.e. Γ may be covered by finitely many translations of Γn), then Γ is soluble-by-finite. The proof applies invariant measures on amenable groups, number-theoretic results concerning the S-unit equation, the theory of algebraic groups and strong approximation results for linear groups in arbitrary characteristic.
منابع مشابه
Powers in finite groups
If G is a finitely generated profinite group then the verbal subgroup Gq is open. In a d-generator finite group every product of qth powers is a product of f(d, q) qth powers. 20E20, 20F20.
متن کاملA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
متن کاملFinitely Generated Annihilating-Ideal Graph of Commutative Rings
Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undi...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملOn Regularity of Acts
In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...
متن کامل